COURSE OUTLINE

ADVANCED CAD-CAM SYSTEMS

(1) GENERAL

SCHOOL	TECHNOLOG	TECHNOLOGY			
DEPARTMENT	FORESTRY, WOOD SCIENCES & DEISGN				
LEVEL	POSTGRADUATE				
COURSE CODE	M121		SEMESTER 2 nd		
COURSE TITLE	ADVANCED CAD-CAM SYSTEMS				
ACTIVITIES			WEEKLY HOURS		ECTS
Lectures		2		6	
TOTAL			2		6
TYPE OF COURSE	COMPULSORY EXPERTISE IN PRODUCT DESIGN & EXPERT				
	SELECTION IN TECHNOLOGY AND MANUFACTURING &				
	INMANAGEN	KETING			
PREREQUISITES:	NO				
LANGUAGE OF TEACHING AND	GREEK				
EXAMINATION:					
COURSE OFFERED TO STUDENTS	NO				
ERASMUS:					

(2) LEARNING OUTCOMES

Learning Outcomes

The objective purpose of the course is the utilization of CAD/CAM systems during the design and production process of industrial products through the use of a modern integrated CAD/CAM system from the design of a product to the programming of digitally controlled CNC machine tools. Upon successful completion of the course, the student will be able to:

- The use of CAD/CAM systems in an industrial environment
- Knowledge of designing in a CAD/CAM system
- Parametric design in a CAD environment
- The acquisition of skills to recognize the appropriate processes for the production of objects ٠ according to their morphology.
- The recognition and utilization of the G code
- The acquisition of knowledge of operation and capabilities of CNC equipment

General Skills

(3) COURSE CONTENT

In the theoretical part of the course the student is taught and learns about:

- Introduction to CAD/CAM systems.
- Use 2d sketches, create sketches with geometric constraints for use in designing 3d geometries.
- Parametric design of morphological features. Familiarity with the principles of design intent.
- 3d model design in CAD software, mainly prism-based geometries and mechanical components.
- 3d model design in CAD software, mainly axisymmetric geometries.

- 3d model design in CAD software using commands that create advanced geometries in 3d space.
- Create assemblies in CAD software.
- Design of product assemblies.
- Advanced modeling -Surface Modeling.
- Creation of mechanisms.
- Converting the CAD/CAM data into machine language and feeding the CNC equipment.
- Machining simulation in CAM software. Manufacturing object on CNC equipment.

In the 1st lesson, the first assignment is given that the students should implement, the duration of the assignment is 7 days, a similar procedure is followed for the following assignments.

The relevant directions are given, while material and instructions are posted on the e-class <u>https://e-class.teilar.gr/courses/MSTX106/</u>

Students are graded for the total performance in the assignments they undertake with a total grade of 40% of the final grade.

(4) TEACHING AND LEARNING METHODS - EVALUATION

COURSE DELIVERY METHOD	In class and remotely			
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES	 Use of PC, ppt slides, projector. Use of PC to learn the CAD/CAM design program, export the machine code as well as use of CNC rapid prototyping to perform the required machining. Learning process support through the e-class electronic platform 			
MANAGEMENT OF TEACHING	Activity	Semester Workload		
	Lectures	26		
	Small individual practice	20		
	tasks			
	Final Assignment	60		
	Independent Study 44			
	Course Total (25 workload			
	hours per credit unit)	150		
STUDENT EVALUATION				
	 I. Written final exam (60%) which includes: Drafting in CAD/CAM software Examination on laboratory equipment II. Presentation of Individual Assignments (40%). 			

(5) RECOMMENDED-BIBLIOGRAPHY

- Suggested Bibliography:

• Rob Thompson, Manufacturing Processes for Design Professionals, Thames & Hudson

- Νικόλαος Μπιλάλης, Εμμανουήλ Μαραβλάκης, Συστήματα CAD/CAM και τρισδιάστατη μοντελοποίηση, Κρητική
- Lee, Kunwoo, Βασικές αρχές συστημάτων CAD/ CAM/ CAE, Κλειδάριθμος
- Schmid D., Kari B., Kraus E., Robens G., Nowak H., Strobel P. 1997 CIM Lehrbuch zyr Automatisierung der Fertigung, Ευρωπαϊκές τεχνολογικές εκδόσεις – Γ. & Σ. Παρικού & ΣΙΑ Ο. Ε., Αθήνα 1997
- Μηχανές αριθμητικού ελέγχου. Steve Krar, Arthur Gill. Εκδόσεις Τζιόλα
- Φιλήμονος, Χρ. Σκιττίδη, 2000. Βασικές αρχές αριθμητικού ελέγχου και προγραμματισμός εργαλειομηχανών CNC. Σύγχρονη εκδοτική, Αθήνα 2000

- Related scientific journals:

- Design Issues
- Computer Aided Geometric Design
- CAD Computer-Aided Design
- International Journal of CAD/CAM
- International journal of rapid manufacturing
- RTejournal (Rapid Technology Electronic Journal)
- Virtual and Physical Prototypin