COURSE OUTLINE

DIGITIZATION AND PROTOTYPING – 3D PRINTING

(1) GENERAL

SCHOOL	TECHNOLOGY				
DEPARTMENT	FORESTRY, WOOD SCIENCES & DESIGN				
LEVEL	POSTGRADUATE				
COURSE CODE	M123	SEMESTER 2 nd			
COURSE TITLE	DIGITIZATION AND PROTOTYPING – 3D PRINTING				
ACTIVITIE	S	WEEKLY HOURS		ECTS	
	Lectures 2 6		6		
TOTAL			2		6
	COMPULSORY IN PRODUCT DESIGN EXPERTISE,				
TYPE OF COURSE	SELECTION OF SPECIALTIES TECHNOLOGY AND				
MANUFACTURING & MANAG			SEMENT AND MARKETING		
PREREQUISITES:	NO				
LANGUAGE OF TEACHING AND	GREEK				
EXAMINATION					
THE COURSE IS OFFERED TO	NO				
ERASMUS STUDENTS					
WEBPAGES COURS (URL)	https://eclass.uth.gr/courses/FWSD P 122/				

(2) LEARNING OUTCOMES

Learning Outcomes

The purpose of the course is to understand the different 3D printing technologies as well as the interactive human-machine interface systems in the design of new products, with the aim of giving postgraduate students a comprehensive understanding of how modern means of printing and designing new products are used in a modern industrial environment with prototyping, optimizing the design and development process of new products.

Upon successful completion of the course, the student will be able to:

- Knows the different 3d printing technologies
- Knows the operation and use of an inject binder technology 3D printer and an FDM technology printer
- Creates prototype models of objects using silicone molds
- Utilizes different 3d printing technologies in specific applications
- Creates electronic sketches
- Designs new products using an interactive design device
- Creates the original production mold

General Skills

(3) COURSE CONTENT

In the theoretical part of the course the student is taught and learns about:

- Introduction to 3D printing.
- **3d printing technologies.** Preparing 3D model for printing, model printing.

- **3d printing parameters.** Printing problems and how to solve them.
- **Printing parameters on an inject binder printer, printing.** Printing parameters on an FDM printer, printing.
- 3d scanning technologies, types of scanners, applications.
- Scanning objects with 3d scanners, creating a digital model.
- Designing an Electronic Sketch.
- Creation of a 3d model from the electronic sketch.
- Prototyping, using Vacuum Casting technology.
- Creating a mold from the 3d model.

In the 1st lesson, the first assignment is given that the students should implement, the duration of the assignment is 15 days, a similar procedure is followed for the following assignments.

The relevant directions are given, while material and instructions are posted on the e-class.

Students are graded for the total performance in the assignments they undertake with a total grade of 40% of the final grade.

(4) TEACHING AND LEARNING METHODS - EVALUATION

COURSE DELIVERY METHOD.	In class and remotely			
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES	 Use of PC, ppt slides, projector Use of laboratory devices such as 3d printers, 3d scanners of the laboratory Support of the learning process through the e-class electronic platform 			
MANAGEMENT OF TEACHING	Activity	Semester Workload		
	Small individual practice tasks	20		
	Final Assignment	60		
	Independent Study 44			
	Course Total (25 workload hours per credit unit)	150		
STUDENT EVALUATION	 I. Written final exam (60%) which includes: Short answer questions from all the material in the book Examination on laboratory equipment II. Presentation of Individual Works (40%). 			

(5) RECOMMENDED-BIBLIOGRAPHY

- Suggested Bibliography:

- Alan Pipes, Drawing for Designers, Laurence King Publishers
- Τεχνολογίες Προσθετικής Κατασκευής, Ian Gibson, David Rosen, Brent Stucker
- Chris Lefteri, Making It: Manufacturing Techniques for Product Design, Laurence King Publishers
- Joan Horvath, Mastering 3D Printing (Technology in Action)

- Christian Hatzfeld, engineering haptic Devices, Springer
- Malika Auvray, Haptics: Neuroscience, Devices, Modeling, and Applications, Springer
- Christopher Barnatt, 3D Printing: Second Edition
- Christopher Barnatt, 3D Printing: The Next Industrial Revolution

- Related scientific journals:

- 3D Printing and Additive Manufacturing
- Rapid Prototyping Journal
- International Journal of CAD/CAM
- International journal of rapid manufacturing
- RTejournal (Rapid Technology Electronic Journal)
- Virtual and Physical Prototypin